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Understanding the relationship between water and production within and across agroecosystems is essential for
addressing several agricultural challenges of the 21st century: providing food, fuel, and fiber to a growing human
population, reducing the environmental impacts of agricultural production, and adapting food systems to climate
change. Of all human activities, agriculture has the highest demand for water globally. Therefore, increasing water
use efficiency (WUE), or producing ‘more crop per drop’, has been a long-term goal of agricultural management, engi-
neering, and crop breeding. WUE is a widely used term applied across a diverse array of spatial scales, spanning from
the leaf to the globe, and over temporal scales ranging from seconds to months to years. The measurement, interpre-
tation, and complexity of WUE varies enormously across these spatial and temporal scales, challenging comparisons
within and across diverse agroecosystems. The goals of this review are to evaluate common indicators of WUE in
agricultural production and assess tradeoffs when applying these indicators within and across agroecosystems amidst
a changing climate. We examine three questions: (1) what are the uses and limitations of common WUE indicators,
(2) how can WUE indicators be applied within and across agroecosystems, and (3) how can WUE indicators help
adapt agriculture to climate change? Addressing these agricultural challenges will require land managers, producers,
policy makers, researchers, and consumers to evaluate costs and benefits of practices and innovations of water use in
agricultural production. Clearly defining and interpretingWUE in themost scale-appropriate way is crucial for advancing
agroecosystem sustainability.
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1. Introduction

Providing food, fuel, and fiber to a growing human population amidst
climate change is one of the greatest sustainability challenges of the 21st
century. Historically, rising agricultural demand was met by converting
native vegetation to croplands or pastures and through technological inno-
vations (Foley et al., 2005; Southgate, 2009). As a result, agricultural pro-
duction is currently the dominant land use globally, accounting for 50 %
of the habitable land on Earth (51 million km2), while the remaining area
– forest, alpine, tundra, and desert ecosystems – present limited options
for additional conversion (Ritchie and Roser, 2013; Tilman et al., 2011).
Advances in breeding, mechanization, irrigation, and fertilization over
the last half of the 20th century led to large increases in crop yields and live-
stock production globally, but at high environmental costs including water
pollution, increased energy use, loss of natural ecosystems and biodiversity,
and amplification of climate change (Foley et al., 2011; Springmann et al.,
2018; Tilman et al., 2011). Thus, there is a need to balance increasing food
production with reducing environmental impacts of agriculture to improve
the short- and long-term sustainability of agroecosystems (Kleinman et al.,
2018; Harmel et al., 2020).

The magnitude of this challenge is growing as climate change increases
temperature, alters precipitation, and causes more frequent and extreme
climatic events such as droughts, floods, and heat waves (IPCC, 2021).
Agriculture, of all human activities, has the highest demand for water
2

globally and is tightly coupled with the hydrological cycle. Shifts in water
availability resulting from climate change will have direct impacts on
agricultural production (Hatfield and Dold, 2019). At the same time, sur-
face or groundwater used for agriculturewill have to competewith growing
demands from urban andwildland water resource needs (Amarasinghe and
Smakhtin, 2014). Understanding the myriad ways water is exchanged
for provisioning, regulating, and supporting ecosystem services is
critical for developing sustainable agroecosystems. However, indicators of
water use in agricultural production vary widely across spatial scales
(e.g., leaf to globe), climate zones (e.g., water-limited vs. nutrient-
limited), agroecosystem types (e.g., maize vs. poultry), and management
practices (e.g., irrigated vs. rainfed), making it difficult to determine
which indicators to use when assessing dynamics and variability in agricul-
tural water use (Fig. 1). A standardized approach to indicator development
and use is critical for improving the efficiency and sustainability of water
resources in agricultural production.

Resource use efficiency in ecology is defined as the “amount of biomass
produced per unit of supplied resource”, with water, nutrients, light, car-
bon, and radiation as common limiting resources (Hodapp et al., 2019).
Concepts underpinning resource use efficiency have deep agricultural
roots. With the advent of industrial fertilizers, ideas emerged to define
the optimal supply of resources to maximize the efficiency of agricultural
production including the Law of the Minimum (Liebig, 1840), the Law of
the Optimum (Liebscher, 1895), and the Law of Diminishing Returns



Fig. 1.Diversity of agroecosystem landscapes (croplands, pastures, and rangelands) represented by 18 sites of the Long-Term Agroecosystem research network (LTAR) in the
United States. Research sites include: subtropical rangelands at Archbold Biological Station (ABS) in Florida (Photo credit: Carlton Ward); Wheat cropland at the R.J. Cook
Agronomy Farm (CAF) in Washington (Photo Credit: Bryan Carlson); Mixed croplands at the Central Mississippi River Basin (CMRB) research station in Missouri (Photo
credit: Curtis Ransom); Shortgrass steppe rangeland at the Central Plains Experimental Range (CPER) in Colorado; Corn cropland at the Eastern Corn Belt (ECB) research
station in Ohio (Photo Credit: Kathryne Rumora); High elevation rangeland at the Great Basin (GB) research station in Idaho; Coastal Plain cropland at the Georgia Atlantic
Coastal Plain (GACP) research station in Georgia (Photo credit: USDA-ARS); Chihuahuan desert rangeland at the Jornada Experimental Range (JRN) in NewMexico (Photo
Credit: John Anderson); Soybean cropland and farmstead near Kellogg Biological Station (KBS) in Michigan (Photo Credit: Phil Robertson); Corn-Soybean-Alfalfa mixed
cropland at the Lower Chesapeake Bay (LCB) research station in Maryland (Photo Credit: Michel Cavigelli); Soybean cropland at the Lower Mississippi River Basin
(LMRB) research station in Mississippi (Photo Credit: Mark Griffith); Corn cropland at the Northern Plains (NP) research station in North Dakota (Photo Credit: Mark Liebig);
Irrigated cropland at the Platte River/High Plains Aquifer (PRHPA) research station in Nebraska; Canola cropland at the Southern Plains (SP) research station in Oklahoma;
Planted pasture near the Texas Gulf (TG) research station in Texas (Photo credit: ChadHajda); Dairy farmnear the Upper Chesapeake Bay (UCB) research station in NewYork
(Photo Credit: Sarah Goslee); Haying alfalfa cropland near the Upper Mississippi River Basin (UMRB) research station in Wisconsin (Photo credit: Randy Mentz); Desert
rangeland at the Walnut Gulch Experimental Watershed (WGEW) in Arizona (Photo credit: Russell Scott).
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(Mitscherlich, 1909). These concepts continue to influence thinking about
agroecosystems, particularly those where management can control the
inputs of limiting resources such as irrigation and fertilizers. Water use
efficiency (WUE) is an operationalized concept for resource use efficiency
(as defined above) and is a common metric used to assess ratio of plant
production to water consumed (Eq. (1); Sinclair et al., 1984; Howell,
2001; Morison et al., 2008; Tang et al., 2014).

Water use efficiency WUEð Þ : the amount
of biomass produced per unit water:

�
�
�
�
WUE ¼ Production variable

Water variable
ð1Þ

Despite the simplicity of the WUE definition, there are many indicators
of WUE in agricultural production settings ranging from plant breeding to
irrigation to basin-scale water resource management (Hsiao et al., 2007;
Howell, 2001). Hence,WUE indicators varywidely in spatiotemporal scales
and measurement variables (Table 1; Fig. 2). The ratio of crop yield or car-
bon uptake to water consumed or used are common indicators of WUE,
which are assessed over spatial scales ranging from the leaf to the globe
and at time scales from seconds to years (Morison et al., 2008). The hydro-
logical variables in the denominators of WUE calculations can also vary
widely: fromprecipitation to irrigation towater used through evapotranspi-
ration (ET), transpiration (T), and soil water depletion (Howell, 2001). At
small spatial scales, WUE can be measured at the plant physiological-level
using leaf gas-exchange to calculate the ratio of photosynthesis to stomatal
conductance (i.e., intrinsic WUE) or at the ecosystem-level with eddy
covariance to calculate the ratio of gross primary production (GPP) or net
ecosystem production (NEP) to ET (i.e., ecosystem WUE; Table 1; Fig. 2).
WUE is also assessed at the landscape to global scale through remote sens-
ing, assessing variability in production via spectral indices (e.g., normalized
difference vegetation index, NDVI) andmodeled data products (e.g., NPPor
GPP estimates; Wagle et al., 2016a, 2016b; Jiao et al., 2021). However,
these common WUE indicators are broadly plant-centric, and can miss
key elements of agriculture (e.g., livestock production). Moreover, many
WUE indicators are limited to the farm or ranch scale. There are other indi-
cators of water use for productivity in agroecosystems that do not fit classi-
cal definitions of WUE but have important implications for understanding
the relationships between agricultural production andwater across the sup-
ply chain, such as water footprints (Mekonnen and Hoekstra, 2011), water
productivity (Molden et al., 2010), and life cycle assessments (Guinee et al.,
2011; Fig. 2).

The goals of this review are to evaluate the measurement, estimation,
interpretation, complexity, and limitations of the many indicators of WUE
in agricultural production and assess the tradeoffs of their use when apply-
ing them across diverse agroecosystems in a changing climate. We discuss
the use and limitations of WUE indicators within the scales pertinent to
plant physiology, biomass and yield production, ecosystem fluxes,
landscape-to-global scales, and agricultural supply chains.We then describe
how to interpret and apply these multi-scalar indicators within and across
diverse agroecosystems that vary in climate, production system, and
Table 1
Examples of water use efficiency variables in agroecosystems across various scales.

Scale Production variable (numerator) Water variable
(numerator)

Physiological - Net photosynthesis
- Carbohydrate production

- Stomatal conductance
- Transpiration

Biomass - Forage
- Grain yield/harvest index
- Aboveground biomass

- Precipitation
- Irrigation
- Evapotranspiration

Ecosystem - Net ecosystem production
- Gross primary production

- Precipitation
- Evapotranspiration

Landscape/region - Normalized difference vegeta-
tion index

- Gridded precipitation
- Modeled evapotrans-
piration

Supply chain - Water productivity - Water footprintt
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management practices. Finally, we evaluate the potential utility and effi-
cacy of usingWUE indicators for adapting agriculture to a changing climate
amidst rising food demands and declining water resources in many regions
of the world.

2. Indicators of water use efficiency

2.1. Hydrological variables – the denominators of WUE

As the denominator in WUE calculations, hydrological variables can
span multiple WUE indicators and are used to quantify agricultural water
use relative to a selected variable of agroecosystem productivity. These
hydrological variables range in spatial scale from the leaf (e.g., stomatal
conductance, T), to the field (e.g., precipitation, irrigation, ET), to the
globe (e.g., gridded precipitation), and across the supply chain
(e.g., water footprint; Table 1; Tang et al., 2014). Hydrological variables
can be differentiated into two types of water use – consumptive and non-
consumptive. Consumptive water use is defined as water that is utilized
through ET, incorporated into products or crops, consumed by livestock, or
otherwise removed from an immediate water environment (e.g., surface or
groundwater; Falkenmark and Lannerstad, 2005). For agroecosystems,
consumptive water use is often the denominator of the WUE calculation
and includes variables such as ET, T, and stomatal conductance, and is also
used in calculations of water footprints, water productivity, and life cycle as-
sessments (Table 1; Pfister and Bayer, 2014). Any remaining water goes to
non-consumptive use such as recharging aquifers and or supplying water to
freshwater and coastal ecosystems (Falkenmark and Lannerstad, 2005).
There are also hydrological variables used in calculating WUE that simply
measure the input of water into the agroecosystem (e.g., precipitation and
irrigation) and do not differentiate between consumptive and non-
consumptive water use.

Selecting an appropriate hydrological variable to assess WUE is influ-
enced by the scope of the research question as well as the scale of the pro-
ductivity variable. For example, stomatal conductance, as well as leaf-level
and whole-plant T are commonly used to calculate WUE at the plant phys-
iological scale. At the field scale, ET is a common variable for estimating
crop water consumption more directly than precipitation. Furthermore,
WUE estimates of different crops or production systems should ideally be
made with hydrological variables that are measured in consistent and
comparable methods. Selecting a hydrological variable for WUE can also
be influenced by data availability and uncertainty. For instance, precipita-
tion is a widely measured hydrological variable, with high spatial and tem-
poral instrumentation coverage globally, and commonly is commonly used
in WUE calculations (Fick and Hijmans, 2017). Other hydrological
variables, such as ET, are more limited in spatiotemporal coverage and
are associated with higher uncertainty than precipitation (Nouri et al.,
2013; Ochoa-Sanchez et al., 2019). However, ET estimates from merged
measurements, satellite data, and models are becoming increasingly avail-
able (Mu et al., 2007; Melton et al., 2021; Anderson et al., 2021).

2.2. Physiological WUE indicators

Researchers calculate WUE at the plant physiological-level to connect
agroecosystemwater budgets andWUEwith basic physiological plant traits
associated with carbon assimilation and water loss. This approach provides
a powerful tool to understand the role that plant physiological traits play in
agroecosystemWUE. At the leaf-level, intrinsic water use efficiency (WUEi)
is calculated as the rate of net CO2 assimilation per stomatal conductance
(Anet/gs), and instantaneous water use efficiency (WUEleaf) is the rate of
net CO2 assimilation per transpiration rate (Anet/T). Leaf gas exchange is
generally measured with portable infrared gas analyzers attached to a leaf
cuvette. Plant leaves are enclosed in the leaf cuvette and changes in carbon
dioxide andwater concentrations aremeasured as a function of time. C3, C4,

and CAM photosynthetic pathways have inherent differences in WUE
because of differing photosynthetic biochemistries and stomatal regulation
(Hatfield and Dold, 2019). For example, C4 plants have naturally higher



Fig. 2. Agroecosystem water use efficiency indicators across multiple spatial scales, climate, production systems, and management practices.
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WUE than C3 plants because their CO2 concentrating mechanism increases
CO2 around Rubisco in the bundle sheath cells, so that lower gs (and water
loss) can provide sufficient CO2 for photosynthesis.

Whole-plant WUE is the relationship between plant biomass and total
water use and is a function of photosynthetic carbon assimilation, transpi-
ration, and assimilated carbon losses such as respiration. Variability in
whole plant WUE results from differences in genotypes, photosynthetic
pathway, plant functional types (e.g., grasses versus shrubs), resource avail-
ability, and drought response mechanisms (Morison and Gifford, 1984;
Eamus, 1991; Araus et al., 2002; Nelson et al., 2004). Lastly, foliar discrim-
ination against the 13C isotope (Δ13C) varies with photosynthetic pathway
(Farquhar, 1989) and is correlatedwithwhole plantWUEamong genotypes
within a species (Hubick et al., 1986; Condon et al., 2004; Ellsworth and
Cousins, 2016; Feldman et al., 2018; Ellsworth et al., 2020).

A major focus in plant physiology-based WUE is scaling from basic me-
tabolism and photosynthesis to whole-plant and field scales to identify
ecosystem-level implications of plant response to the environment. Scaling
basic metabolism and photosynthesis through the leaf and plant levels to
the agroecosystem scale requires understanding the physiological factors
that influence WUE at each level and how they are mechanistically linked
(Box 1). WUE can be derived frommodels of CO2 assimilation and stomatal
conductance such as the Ball-Berry model and its derivations (Ball et al.,
1987; Farquhar, 1980). Scaling from the leaf to the entire canopy has
been accomplished in the ‘big leaf model’ and the ‘two-leaf model’ by con-
ducting leaf-levelmodeling of photosynthesis and water loss on a hypothet-
ical leaf equal in size to the entire canopy leaf area, which can be divided
into sun and shade components (de Pury and Farquhar, 1997; Wu et al.,
2018). Currently, more complex 3-D models of leaf canopy architecture
are being developed to better predict canopy photosynthesis and transpira-
tion (Chang et al., 2019; Song et al., 2013). Scaling from the leaf to the
whole plant can improve the mechanistic understanding of the role of pho-
tosynthetic and transpiration parameters on whole plant WUE. For exam-
ple, plant breeding and crop management can benefit from a better
understanding of how leaf physiology affects whole plant traits in testing
5

varieties across scales (Wu et al., 2016). Plant responses to global change
drivers, such as increased CO2, temperature, and drought have been a
large research focus and can be more effectively understood by scaling
between plant and agroecosystem levels. For example, measurements of
WUE of invasive species, plant growth responses to grazing, experimental
manipulations such as Free Air CO2 Enrichment (FACE) projects, rainfall
manipulations, and common garden experiments have shed light on the
physiological factors that contribute to rangeland agroecosystem WUE
(Ainsworth and Long, 2005; Nippert et al., 2009; Ashbacher and Cleland,
2015; Mata-Gonzalez et al., 2021; Doescher et al., 1997; Caldwell et al.,
1981; Zhang et al., 2020).

There are several challenges to assessing physiological WUE across
scales. First, physiological WUE is a complex trait with multiple compo-
nents, with each component trait only having a small effect on WUE
(Leakey et al., 2019). Improving physiological WUE requires better defin-
ing each component trait and its influence on WUE and developing pheno-
typing platforms to rapidlymeasure these traits. Geneticmapping has led to
improved understanding of their genetic architecture, and multiple genes
driving WUE have been discovered (Feldman et al., 2018; Ellsworth et al.,
2020; Masle et al., 2005; Karaba et al., 2007). The second challenge is
that measurement and instrumentation limitations reduce the ability to
identify, define, and measure the component traits of WUE. For example,
leaf-level gas exchange provides very accurate snapshots of WUE but vary
along a leaf blade and among leaves based on their location within the
canopy, age, nutrient status, and time of day. Consequently, gas
exchange-based measures of WUE do not reflect the diurnal cycle of WUE
or the mean WUE for the entire canopy or over the life of the plant or
production cycle (Medrano et al., 2015). Often single measurements of
leaf WUE do not agree with measures of whole plant WUE, which include
non-leaf carbon and water losses not included in leaf WUE (Medrano
et al., 2015). Whole plant WUE is most commonly measured using a lysim-
eter approach that provides accurate measures of water loss. Carbon gain
measurements through time can be done using imaging, but accuracy is
limited by the ability to identify and measure all plant-associated pixels



Box 1.Water use efficiency from the plant to the field. Modified from Current Opinion in Plant Biology (Ellsworth and Cousins, 2016) with permission from Elsevier.
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and the robustness of the pixel to biomass relationship, while direct and
mostly destructive sampling can give accurate measurements of carbon
gain/biomass but are limited to a single time point per plant (Gehan
et al., 2017; Feldman et al., 2018). Chamber-based studies allow gas
exchange of a whole plant to be measured continuously, and theymay pro-
vide the ability to better understand the relationship between individual
leaves and whole plant WUE (Perez-Priego, 2021; Pieters et al., 2022).
Chamber-based methods to monitor gas exchange and belowground pro-
cesses such as root respiration have limitations due to chamber size because
larger chambers are more difficult to construct and chamber effects on gas
exchange measurements can require corrections, but progress is being
made to improve their effectiveness (Patono et al., 2022; Pérez-Priego
et al., 2015; Pieters et al., 2022). Lysimeter and chamber-based studies
6

provide precise measurements and can be informative, but nonetheless
they are an artificial situation that presents challenges to translating the
results to the field scale. In contrast, in situ measurements of whole plant
WUE can remove the artificiality of the pot studies, but they are seldom
made because accounting for all pathways of carbon gain and water loss
is challenging. Sap flow technique can be used to measure water loss but
calculating plant mass is difficult, especially when including belowground
biomass or multiple time points in the growth of an individual plant. As
in lysimeter studies, biomass production can be calculated from image anal-
ysis, allometry, or destructive harvesting. Theoretically, the physiological
relationship of WUE varies across scales. However, measurement and
instrumentation limitations restrict the ability to empirically validate
these physiological models beyond the sub-leaf and leaf levels, further
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restricting model refinement. Nonetheless, technological and scientific
advancements are quickly overcoming these challenges such that many
indicators will soon be measured or estimated more accurately.

2.3. Biomass/grain yield WUE

WUE in agricultural production is often measured in terms of above-
ground biomass or grain yield, per unit water input or water consumed.
Unlike plant physiological WUE at the leaf-level, which presents snapshots
in time (seconds to minutes), biomass/grain yield WUE integrates plant
responses over longer time scales (e.g., a growing season) and are often
reported frequently in long-term site records (Yost et al., 2016, 2017).
These WUE indicators serve as key variables to assess agricultural produc-
tion from both food production and economic perspectives and can be
useful when comparing similar variables (e.g., grain yield to grain yield)
and can encompass different spatial (e.g., plots, fields, and small water-
sheds) and temporal (e.g., seasonal to annual) scales (Yost et al., 2019).

In rangeland systems, biomass is usually quantified as the annual above-
groundnet primary production (ANPP),with seasonal or annual precipitation
input as a common hydrological variable (e.g., rain/precipitation use effi-
ciency; Huxman et al., 2004). In rangelands with herbivores (native or live-
stock), it can be challenging to fully account for net carbon flows or ANPP
as a portion of the plant growth is consumed by grazing animals. For crop-
lands, the productivity component is the marketable portion of the plant:
grain yield for cereal grain crops, vegetable or fruit yield (which may be the
belowground fraction, e.g., tubers), and aboveground biomass for hay and
bioenergy crops. WUE is calculated based on the relevant time scale for the
water utilized by that crop, thus time scale may be a growing season, or
even multiple years when considering crop rotations or cropping systems.

While measurements such as grain yield or ANPP are useful when com-
paring WUE between similar agricultural production variables, it can be
Fig. 3. Biomass/Grain Yield WUE. Water use efficiency (WUE) for maize and switchgra
(ANPP) for the production variable and growing season precipitation (April–September)
was conducted in Eastern Nebraska (2000–2014) under different nitrogen (N) fertilizer r
different N fertilizer rates. (c) MeanWUE by biomass variable and fertilizer rate, with sta
rate. Data available at https://agcros-usdaars.opendata.arcgis.com/pages/reap.
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challengingwhenmaking such comparisons across different agroecosystems
and plant measurement variables. Long-term cropland data in Eastern
Nebraska (2000–2014) showhowWUEcan vary through time, and howvar-
iability is influenced by crop type (maize vs switchgrass), plant fraction
(ANPP vs grain yield), and management (fertilizer rate; Fig. 3). Direct com-
parisons of the effect of management or climate onWUE are best made with
consistent measurements, such as between crop type but within plant frac-
tion or between plant fractions, but within crop type. For example, switch-
grass is more sensitive to increased nitrogen than maize, when examining
responses of WUE and variability of the ANPP plant fraction (Fig. 3). Fur-
thermore, production-basedWUE estimated from only the aboveground bio-
mass does not account for the energy requirements of certain grains (starch-
based versus protein-based) and the allocation of carbon to belowground
biomass. Such information is important when comparing potential ecosys-
tem services of different crops or production systems.

Another challenge in calculating biomass/grain yield WUE is the inclu-
sion of non-cash crops, such as cover crops, as these affect consumptive
water use and storage (Unger and Vigil, 1998), but can have additional
ecosystem service benefits (Haruna et al., 2018). In addition, fallow periods
must be accounted for in rainfed areas that utilize fallow periods to leave
soil moisture for the cash crop. For example, Jones and Popham (1997)
calculated efficiency across different temporal scales by dividing grain
yield by harvest-to-harvest available water. Under this approach, grain
sorghum WUE was greater for a continuous sorghum system compared to
sorghum in a wheat-sorghum-fallow system (12 months versus 16 months,
respectively).

2.4. Ecosystem WUE indicators

WUE at the patch or ecosystem scale reflects the amount of water and
carbon transferred between the land surface to the atmosphere and is
ss was calculated using grain yield (Grain) or aboveground net primary production
as the water variable (e.g., WUE= ANPP/growing season precipitation). Research
ates (60 and 120 kg N ha−1). (a, b) WUE over time for each biomass variable at two
ndard error bars. (d) Coefficient of variation (CV) by biomass variable and fertilizer

https://agcros-usdaars.opendata.arcgis.com/pages/reap
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commonly measured using micrometeorological approaches beginning
first with Bowen ratio instrumentation (Sinclair et al., 1975) and now,
more commonly, using the eddy covariance technique (Baldocchi, 2003;
Burba, 2019). Eddy covariance can provide nearly continuous (e.g., 30-
minute intervals) measurements of both loss of water (ET) and the net
carbon dioxide exchange (i.e., NEP) at a patch scale of ~104–106 m2. This
extent is typically called the ecosystem scale because of the multiple bio-
physical components within it (e.g., soils, different flora and fauna;
Baldocchi, 2003). One major advantage of using eddy covariance measure-
ments to evaluate WUE is the ability to determine near instantaneous WUE
for every half-hour to quantify diurnal cycles of WUE. Characterizing high-
frequency response to weather variations is important for understanding
how agroecosystems are impacted by changing climate. Continuous eddy
covariance measurements can also be integrated to determine ecosystem
WUE over various time periods (i.e., from hourly to annually). Long-term
and continuous eddy covariance measurements offer valuable and directly
comparable datasets to evaluate ecosystem WUE across production sys-
tems, regions of the globe, and gradients in soils, climate, land use, manage-
ment, and disturbance (Pastorello et al., 2020). Eddy covariance
measurements provide information on the effects of environmental drivers
and management practices on WUE (Chi et al., 2017) and can provide
ground validation for remote sensing assessments (Lu et al., 2017).

Eddy covariance-measuredNEP can be partitioned intoGPP and ecosys-
tem respiration (ER) with relatively well-constrained uncertainties (Lasslop
et al., 2010). As a result, eddy covariancemeasurementsmake it possible to
determine WUE at the ecosystem scale as the ratio of GPP to ET (Hu et al.,
2008; Law et al., 2002; Wagle et al., 2016b) and/or the ratio of NEP to ET
(Emmerich, 2007; Monson et al., 2010; Wagle et al., 2016a, 2016b;
Biederman et al., 2016), representing either net or gross carbon uptake, re-
spectively. In addition, slopes of the regression of carbon gain (NEP or GPP)
vs. water loss (ET or T) can be used to determineWUE at different temporal
scales (i.e., hourly, daily, monthly, seasonally, or annually; Emmerich,
2007; Kuglitsch et al., 2008; Law et al., 2002;Wagle et al., 2016a). Stomatal
regulation, which is a function of vapor pressure deficit (VPD), regulates
carbon assimilation and T (Jarvis and McNaughton, 1986). As a result,
intrinsic WUE (WUEi) can be calculated as carbon assimilation (GPP)/
stomatal conductance (Gc) (Schulze and Hall, 1982) or inherent WUE
(IWUE) by multiplying WUE (GPP/ET) by mean daylight VPD (GPP ×
VPD/ET) (Beer et al., 2007; Law et al., 2002). Due to their dependence on
environmental conditions, these WUE metrics are more directly compara-
ble to physiological-scale WUE determined by the ratio of leaf assimilation
to stomatal conductance (e.g., Medlyn et al., 2017). Using WUEi and IWUE
metrics can be more appropriate than WUE for assessing the adaptive
adjustment of ecosystem physiology to environmental conditions (Beer
et al., 2007).

There are several challenges regarding the use of eddy covariance for
WUE. First, ecosystem-level carbon uptake (NEP or GPP) and water loss
(ET or T) measured by or derived from eddy covariance assesses only the
land area contributing to the measured fluxes, ranging from less than a
hundred meters to several kilometers depending on several factors
(e.g., tower height, weather conditions, and canopy characteristics). Sec-
ondly, high equipment costs, complex logistical requirements, and diffi-
culty of interpreting fluxes in complex heterogeneous landscapes limit the
coverage directly achievable with eddy covariance. Finally, NEP and ET
measurements from eddy covariance systems represent integrated, above-
canopy fluxes, which are not direct measures of the canopy functional
fluxes of GPP and T. Instead, NEP and ET are confounded by ER and evap-
oration (E), respectively. Biophysical processes occurring in plants and soils
can more greatly influence NEP than GPP, as NEP is a more complicated
process involving both plants and microbial communities. As a result,
GPP and ET generally show a higher correlation than do NEP and ET
(Biederman et al., 2016). In practice, ET is often considered equivalent to
T for select measurement periods, with the common practice being to filter
out several days with and after rainfall so that E may be assumed to be
negligible. This allows one to determine T-based WUE at the ecosystem
scale without direct measurement of T. However, this assumption seems
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inadequate, as non-negligible E can continue over aweek ormore following
rainfall events (Moran et al., 2009), and daily E can account for 15–20 % of
daily ET even during peak growths in dry periods (Wagle et al., 2021).
Thus, the assumption of negligible E results in overestimates of vegetation
water requirement and lower WUE (Wu et al., 2015). Estimations of WUE
based on T rather than ET (Gong et al., 2017; Hu et al., 2008) can account
for variable amounts of E and improve WUE estimates (Scott et al., 2021;
Wagle et al., 2021). Even though GPP and T are not directly measured by
eddy covariance systems, calculating WUE using partitioned GPP and T
can provide meaningful ecosystem WUE for cross-site comparisons
(Nelson et al., 2020; Wagle et al., 2021).

2.5. Landscape-to-global scale WUE indicators

Researchers, land managers, and decision-makers require reliable WUE
estimates at the landscape, regional, national, and global scales, yet many
measurements of WUE (e.g., physiological, grain yield, eddy covariance)
are measured at much smaller scales and often do not capture the inherent
variability present at broader scales. Satellite-based remote sensing
(e.g., Landsat, Sentinel, and MODIS) is available globally at various spatial
and temporal resolutions, allowing mechanistic linking of smaller-scale
WUE indicators to broader spatial extents (Cai et al., 2021). For example,
satellite remote sensing has been proposed as a low-cost and scalable solu-
tion to fill widespread gaps in monitoring of irrigation water use in both
developed and developing countries, bypassing the technical, socioeco-
nomic, and political challenges that to date have constrained in-situ moni-
toring (Foster et al., 2020). In an assessment of global WUE estimated from
satellite remote sensing, Sun et al. (2016) indicated that different mecha-
nisms govern response of WUE to increasing precipitation, highlighting
the importance of scale-dependent interactions. Remote sensing is also
used to assess impacts of drought across national (Ahmadi et al., 2019),
continental (Funk et al., 2019), and global (Yu et al., 2017; Huang et al.,
2017) scales.

The numerator, or production variables used in calculating remote
sensing-based WUE, can be direct measures of spectral reflectance, often
expressed as vegetation indices related to photosynthetic activity
(e.g., NDVI; enhanced vegetation index - EVI), or an indirectly estimated
variable derived from empirical relationships between spectral reflectance
and groundmeasurements, process-based models (e.g., light-use efficiency;
modeled NEP from the Soil Moisture Active Passive mission: Jones et al.,
2017), or a combination of direct and indirect measures. For example, the
MODIS GPP product uses a light-use efficiency model parameterized with
a fraction of photosynthetically active radiation (or FPAR) and land cover
derived from spectral reflectance (Heinsch et al., 2003). In addition,
thermal infrared remote sensing (TIR) can effectively augment Landsat
TIR retrievals that serve to improve models to estimate ET (Anderson
et al., 2021). Biotic variables represent land surface conditions at a single
point in time (e.g., NDVI, EVI, SIF) or conditions accumulated over a period
of time (e.g., annual GPP or NPP, annual integrated-NDVI).

The denominator in remote sensing-based WUE estimates can include
gridded precipitation, vapor pressure deficit, ET or T, soil moisture, or irri-
gation. Generally, remote sensing-based estimates of the denominator for
WUE are derived from process-based models (e.g., MODIS ET product,
Mu et al., 2007; SMAP product, Chan et al., 2018; Colliander et al., 2017)
or use interpolation from weather station networks, resulting in varying
uncertainty depending on terrain complexity and the distance of the grid
cell to the nearest weather station. While soil moisture can be estimated
directly from active (e.g., RADAR) or passive spectral reflectance, develop-
ing direct relationships is hindered by interactions between soil and vegeta-
tion reflectance and high spatial heterogeneity (both laterally and with
depth) as compared to the resolution of available measurements
(e.g., SMAP; Mohanty et al., 2017).

Despite themany benefits of continuouslymonitored indicators ofWUE
in space and time, remote sensing-based WUE has several limitations. The
utility, application, and performance of all remotely sensed data products
are influenced by many factors (e.g., source, method, ground resolved
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distance or cell grain size, and revisit frequency; Wu and Li, 2009). Simpli-
fied algorithms and parameter estimates lead to uncertainties in remote-
sensed estimates of biomass, GPP, and ET (Cai et al., 2021). Since the
hydrological variable (i.e., the denominator) is typically derived from
process-based models or interpolation, it is often challenging to obtain
highly resolved estimates with low uncertainty. Additionally, commonly
used spectral reflectancemeasures (i.e., greenness) indicate photosynthetic
capacity rather than actual photosynthesis, highlighting the need to
improve direct measures of physiological function such as solar-induced
fluorescence (SIF; Smith et al., 2019; Wang et al., 2022).

Several emerging opportunities exist or are planned with the potential
for downscaling remote sensing observations and model estimates. New
sensor constellations (e.g., Planet) and data fusion techniques (e.g., Spatial
and Temporal Adaptive Reflectance Fusion Model; Gao et al., 2006; and
the Harmonized Landsat-Sentinel dataset by NASA; Claverie et al., 2018)
are now providing daily and near-real time remote sensing at relatively
fine spatial resolution (1–30 m). Emerging satellite observations
(e.g., ECOSTRESS, OCO-3), and future satellite missions (e.g., GeoCarb,
TEMPO, Sentinel-4) are expected to provide enhanced opportunities for
characterizing and understanding how GPP, ET, and WUE vary over the
course of the day in response to temperature, water stress, and management
practices (Xiao et al., 2021). In addition, innovative measurements, such as
SIF, alongwith robustmethods for data integrationwithOCO-3 formonitor-
ing drought stress using neural networks (e.g., Zhang et al., 2018; Li et al.,
2020) are expected to overcome current challenges with the temporal and
spatial resolution for quantifying indicators of water status and use.

2.6. Water use indicators across supply chains

Indicators of WUE in agroecosystems discussed thus far are calculated
on small (e.g., leaf, field) or large scales (e.g., basin, globe) and are gener-
ally plant-centric, focusing on carbon uptake or plant production related
variables (e.g., photosynthesis, grain yield, biomass). However, bringing
an agricultural product from the field to the dinner plate involves a large,
complex commodity chain, utilizing multiple water resources, and increas-
ing the total water use of a given product. Here, we highlight three
approaches that can provide a more holistic assessment of water use across
the supply chain: water footprints (Hoekstra et al., 2011), water productiv-
ity (Molden et al., 2010), and life cycle assessments (LCA, Eq. (2); Guinee
et al., 2011; Fig. 2). These approaches allow producers, consumers, and
resource managers to assess both the economic and environmental
tradeoffs of entire production systems.

Water Footprint : the total volume of freshwater used to produce a product;
measured over the full supply chain as water consumed blue and greenwaterð Þ
and=or polluted grey water; Hoekstra et al:; 2011ð Þ:

Water Productivity : the ratio of net benefits from agricultural systems ðe:g:;
biomass; crop yields; revenueÞ to the amount of water used to produce the
benefits holden et al:; 2010ð Þ:

Life Cycle Assessment : assess the environmental impacts of a productionsystem
along the entire supply chain Guinee et al:;2011ð Þ:

ð2Þ

A water footprint is a comprehensive indicator of freshwater resource
appropriation for an individual person, product, commodity chain, river
basin, nation, etc. Water footprints are one of several environmental assess-
ment methods that help gauge the impact of human activity on natural re-
sources (Pfister and Hellweg, 2009). The concept of a water footprint
incorporates three aspects of water use: green water (precipitation stored
in the root zone and consumed by plants), bluewater (surface or groundwa-
ter resources that are evaporated or incorporated into a product), and grey
water (the amount of fresh water required to assimilate pollutant loads to
achieve existing ambient water quality standards; Mekonnen and
Hoekstra, 2011). Water footprints can be utilized at global scales, for
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specific local agricultural production, or for future trend scenarios
(Lovarelli et al., 2016). The concept of virtual water trading also relies
heavily on the water footprint method to assess the water use in exported
or imported products (Hanasaki et al., 2010).

Water productivity is the closest of the supply chain-focused water use
indicators to the standard definition of WUE because it calculates the
ratio of net benefits of agriculture to water use (“physical water productiv-
ity”; Molden et al., 2010).However, another indicator, economicwater pro-
ductivity, is defined as the value derived per unit of water used, which can
be increased by either reducing the costs or increasing the value generated
by water use (Molden et al., 2010). For example, economic yields can be
increased by breeding plants with a higher harvest index (e.g., the weight
of the harvested product as a percentage of total plant weight), which can
produce more revenue per unit of water consumed through transpiration.
While economic productivity is frequently used to consider the profit gen-
erated per unit of water, it can also include non-market values (positive
or negative) to generate a more holistic perspective. Such economic valua-
tions of environmental uses are critical when determining tradeoffs and
opportunity costs for water use.

Life cycle assessments are typically considered “cradle to grave” and
product-focused, while water footprint analyses have a water management
focus and define the boundaries based on the specific goal of the analysis
(Boulay et al., 2013). Life cycle assessment is a comprehensive method
that evaluates the environmental impacts of a product along the entire com-
modity chain from production to transportation, consumption, and dis-
posal. Life cycle assessments generally consider land use impacts, material
use, greenhouse gas emissions, and pollution production in addition to
water use impacts (Guinee et al., 2011).

These three indicators are useful tools for evaluating the water used in
bringing an agricultural product to market. A common limitation across
these water use indicators is data availability at various scales. Information
on water use may be available at time scales or resolutions much coarser
than what is needed for a local impact study. Uncertainties will vary
spatially based on the availability and quality of data. For example, detailed
records of surface water withdrawals may exist in some states or countries,
but not in others, which adds uncertainty to blue water estimations. These
supply chain water use indicators also have methodological limitations.
Life cycle assessments focus on the negative environmental impacts of a
production process but do not incorporate the positive ecosystem services
that a systemmay provide (van derWerf et al., 2020). Also, both indicators
are based on production amount and not the nutritional quality of the
food. The functional unit for life cycle assessments and water footprints
is typically “kg” ormass, but there is a progress toward considering nutrient
quality indexes in the LCA evaluation (Sonesson et al., 2019). To align
different production systems for comparisons, it may be more effective
to utilize a functional unit related to nutrition, such as the Nutrient
Rich Foods index or an individual nutrient like protein, to be able to com-
pare various commodities with drastically different production methods
such as beans, beef, rice, and poultry (Drewnowski, 2010; Sabate et al.,
2015).

3. Discussion

Increasing WUE or producing ‘more crop per drop’ of water has been a
major goal of agriculture, reflected by the diversity of WUE indicators in
agricultural production. Each indicator carries a set of costs and benefits,
measures patterns and processes at a specific spatial and temporal scales,
and informs certain aspects of management and production. Given that
each WUE indicator has benefits and limitations, there is no ‘silver bullet’
WUE indicator to fully assess how agricultural practices and innovations
impact water resources and productivity. Focusing on a single WUE indica-
tor in complex agricultural systems may be misleading and fail to consider
additionalwater consumed or costs involved in production (Giordano et al.,
2021). Furthermore, optimizing a single WUE indicator (e.g., leaf-level
WUE) over other indicators may have unintended impacts at different
spatial scales or other resources and production goals.
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Selecting a WUE indicator or set of indicators depends on the research
question, agricultural practice, innovation, or policy at hand. For example,
biomass-based WUE indicators (e.g., grain yield per mm of rainfall) can be
used to evaluate how a givenmanagement practice (e.g., N fertilization) in-
fluences the relationship of agricultural productivity (e.g., grain yield) to
variability in precipitation. Moreover, ecosystem-level indicators of WUE
are often used to evaluate how innovation in agriculture (e.g., adaptive live-
stock management) can influence environmental sustainability (e.g., net
ecosystem carbon balance; Spiegal et al., 2022). Looking more broadly
across the supply chain, WUE indicators can also be employed in LCAs
that quantify the water used in bringing an agricultural product to the
consumer (Guinee et al., 2011). Importantly, WUE indicators can inform
economic analyses that assess the costs and benefits of alternate water use
management choices, across multiple scales and diverse agroecosystems.
In this light, standardization and communication about WUE indicators is
critical for sustainability outcomes in agroecosystems at multiple scales.

3.1. WUE indicators – spanning scales

WUE indicators in agricultural production span a wide range of spatio-
temporal scales andmeasurement types (Table 1; Fig. 2). Combining multi-
ple spatial scales can improve our mechanistic understanding of how
management or climate change influences the relationship between water
use and productivity. For example, leaf-level plant WUE indicators, such
as intrinsic WUE, can evaluate how elevated CO2 may increase the rate of
CO2 assimilation per unit of water transpired (Leakey et al., 2019). How-
ever, scaling the leaf-level impact of rising CO2 on WUE to grain yield
will improve mechanistic understanding of the costs and benefits of rising
CO2 for food production (Box 1). Combining physiological measurements
with both ecosystem and biomass indicators can provide an improved
mechanistic understanding of leaf- to ecosystem-level dynamics of water
and carbon.

Utilizing WUE indicators from several spatial scales can fill gaps and
identify how management and innovation ultimately affect WUE from
farm to table. There remain several challenges to achieving this holistic
understanding of agricultural water use and productivity dynamics. For ex-
ample, ground-based measurements of agricultural production (e.g., grain
yield or eddy covariance), are limited in spatial extent, often stopping at
the farm or ranch gate. As a result, both production andwater usemeasures
may fail to capture the impacts of environmental heterogeneity and diverse
management practices that occur across farms or regions. This challenge
can be overcome by filling such spatial gaps with satellite remote sensing
observations. A variety of remote sensing-based CO2 and ET prediction
methods andmodels have been developed and validated using eddy covari-
ance data and used to estimate water and productivity at regional to global
scales (Allen et al., 2007; Choudhury et al., 1994; Gillies et al., 1997; Glenn
et al., 2007; Kustas and Norman, 1996; Monteith, 1972; Prince and
Goward, 1995; Running et al., 2004; Wagle et al., 2017; Xiao et al.,
2004). On the other hand, large-scale indicators often rely on simplified
parameter estimates, which can be too coarse for local assessments and
can benefit from ground-level indicators. For example, biomass measure-
ments and eddy covariance towers can provide ‘ground truthing’ to inform
remote sensing. Combining ground-based WUE indicators with broader-
scale indicators such as eddy covariance and remote sensing measurements
of ET can help capture such regional variability and improve estimates of
WUE for production systems and over complete commodity life cycles.

To maximize the potential benefits of combining WUE indicators from
multiple scales, several technical challenges must be recognized. First,
uncertainty associated with measurements at different scales must be
accounted for properly. Inaccuracies in estimates of ET, yield, and irrigation
can propagate throughout the scaling process in a water footprint analysis,
resulting in footprint values differing by 100 % for a single field (van der
Laan et al., 2019). Second, indicators vary in their temporal sensitivities
to environmental drivers across spatial scales – from seconds (e.g., leaf-
level photosynthesis) to the entire growing season (e.g., grain yield).
Finally, combining multiple indicators requires an assessment of the
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correlations among different indicators of WUE. Indicators may be redun-
dant (highly correlated), complementary (information gained when com-
bined), or divergent (provide different signals to the same phenomena;
Browning et al., 2021). Complementary indicators of WUE in productivity
will provide the most improved holistic and mechanistic understanding of
how management or climate change drivers influence the relationship
between WUE and productivity, while divergent indicators may obscure
such relationships.

3.2. WUE indicators – comparing agroecosystems

Agroecosystems span an incredibly diverse range of climatic and
edaphic conditions due to advances in crop and livestock genetics, produc-
tion technologies, and resource management strategies (Fig. 1). Across
diverse environments (e.g., deserts to rainforests), resource efficiency can
vary due to limitations in water, nutrients, light, and radiation (Hodapp
et al., 2019). In water-limited agroecosystems, optimizing WUE may be
the primary goal, while in water-excess systems, mineral nutrients may be
the primary limiting resource and the focus of management (Cossani and
Sadras, 2018). Cross-site comparisons of productivity can allow researchers
to evaluate the efficiency of production at regional to national scales, iden-
tify generalizable relationships between water and production, and assess
food security vulnerabilities and adaptations to climate change.

Given the diversity of agroecosystems, selecting an optimalWUE indica-
tor or combination of indicators for comparing agroecosystems requires a
common currency that indicates WUE at comparable spatial and temporal
scales and is measured with consistent methods at a frequency that ade-
quately captures environmental variability. Eddy covariance and remote
sensing are examples of measurementswith consistentmethods and contin-
uous data collection that allow for direct comparisons of agroecosystems
and regional-level responses (e.g., Wagle et al., 2019, 2021). Additionally,
such measurements are often limited to long-term research stations and
specific to local questions. Coordinated research networks can aid with
standardizing measurements for direct comparisons of diverse agriculture.

While there are options to compare environmental responses across
agroecosystems, direct comparisons of food production-related indicators
are more challenging. Biomass measurements (e.g., grain yield, ANPP)
often vary by the production system, making comparisons across croplands
and rangelands or different types of crops challenging (Fig. 3). Further-
more, higher WUE for one crop can mask the potentially higher water
requirements in comparison to alternative crops in a region - a crucial factor
in evaluating the environmental sustainability of water allocation to
agriculture as well as regional crop choice. Evaluating the energy and nutri-
tional density of foods in relation towater use along food production chains
is an emerging option that produces a common currency (calories, protein,
or nutritional density) across diverse agricultural products (Sonesson et al.,
2017).

3.3. WUE indicators – adapting to climate change

Crop yields and livestock production have increased substantially since
the 1960s to meet rising demands from a human population that grew in
both size and affluence (Thornton, 2010; Southgate, 2009; Ritchie and
Roser, 2013). Agricultural production will need to keep pace with contin-
ued growth in demand, yet climate change, declining freshwater resources,
and urbanization may limit yield growth potential. There is evidence
that current rates of yield increase for key crops (maize, rice, wheat, and
soybeans) are far below what is needed to meet future demands (Ray
et al., 2013). Temperature- and precipitation-related climate change drivers
can affect food production through shifts in climate envelopes, seasonal
changes, and increased extreme events (IPCC, 2021). Crop yield reductions
have been observed in lower latitudes globally and are projected to decline
further over the next century (Rosenzweig et al., 2014). Global mean NPP
in rangelands is projected to decline by 2050, resulting in a 7–10 % decline
in total livestock production and economic losses of $9.7–12.6 billion
(Boone et al., 2018).
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Many of the direct and indirect effects of global change on agricultural
production are related to impacts on water resources. Changes in precipita-
tion amount and pattern, increased extreme events (e.g., droughts and
deluges), and higher rates of evaporation will alter water inputs, storage,
and loss, with direct effects on productivity (IPCC, 2021; Zhang et al.,
2021). Irrigation has been an important tool for increasing crop yields but
represents the single largest anthropogenic demand for freshwater,
accounting for 70 % of global water withdrawals (Shiklomanov and
Rodda, 2003). Declining freshwater availability, higher evaporative losses,
and competition with urban and environmental water demand will make
irrigation water management more challenging. For example, water avail-
ability in thewestern U.S. has declined due to reduced snowpack and snow-
melt, increased droughts and floods, forest cover loss, and evaporative
losses (Dettinger et al., 2015). In many water-limited regions of the globe,
groundwater aquifers are the sole source of perennial freshwater, providing
a buffer against water deficits, but are being depleted at unsustainable
rates. Withdrawals from the Ogallala Aquifer in the U.S. Great Plains,
which provides water to one-fifth of the total US agricultural harvest, are
drastically outpacing recharge rates and threaten drinking and irrigation
water supplies. In Kansas, 30 % of the groundwater from this aquifer has
been removed with another 39 % projected to be withdrawn over the
next 50 years. Given the recharge rates in this region, it would take
500–1300 years to completely refill the aquifer if depleted (Steward
et al., 2013).

Water use in agricultural productionwill have to competewith growing
demands of urbanization. By 2030, population growth is projected to
increase urban water demand by 80 % (Amarasinghe and Smakhtin,
2014). This sets up potential urban-rural conflicts for water resources,
particularly in regions where cities have priority for water over other
sectors (Florke et al., 2018), and highlights the importance of examining
opportunity costs of water uses. Assessing the relationship between water
use and production across diverse agroecosystems and spatial scales is
also essential to enhance resilience and adapt agriculture to climate change.
Improving irrigation management and restoring soil structure and hydro-
logical function can enable producers and managers to increase the resil-
iency of water resources to climate variability and extremes. Crop and
livestock breeding can select for genotypes that have higher resilience to
climate variability and extremes. Indicators of WUE and production at the
leaf, whole plant, and ecosystem levels can help assess how water stress af-
fects water use along the soil-plant-atmosphere continuum.WUE indicators
can also be used to track climate impacts to enable producers to adaptman-
agement to changing conditions on the farm and ranch. Water footprints
can be developed frommeasured or modeled data, and therefore it is possi-
ble to evaluate the impact of projected climate scenarios on water use in
agricultural production (Chen et al., 2021; Yesilkoy and Saylan, 2021).

4. Conclusions

Understanding the relationship between water and agricultural produc-
tion within and across agroecosystems is critical for providing food, fuel,
and fiber to a growing human population, while reducing environmental
impacts and adapting to climate change. Increasing the efficiency of
water use in the agricultural enterprise by producing ‘more crop per
drop’, or higher WUE, has been a long-term goal of agricultural manage-
ment, engineering, technological innovations, and crop breeding. However,
each indicator of WUE in agricultural production has benefits and limita-
tions, and therefore the key is to select an indicator or set of indicators
that best address the scientific question, policy, agricultural management,
or technological innovation. Optimizing a single WUE indicator (e.g., leaf-
level WUE) over other indicators may have unintended impacts at different
spatial scales or other resources and production goals. Traditional measure-
ments of WUE are often plant-centric and limited in scale to the farm or
ranch, and therefore may miss important water-related impacts at regional
scales or across the food production system. Agriculture already has the
highest demand for water globally and water resources are projected to
become impacted by climate change and competition from other water
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demands, such as urbanization. Indicators of WUE in agricultural produc-
tion can help balance production demands with sustainability goals.
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